Selective BOLD responses to individual finger movement measured with fMRI at 3T.
نویسندگان
چکیده
Although the gross somatotopic organization of the posterior bank of the precentral gyrus is well established, a fine scale organization of the representations of the digits of the hand has not been fully characterized. Previous neuroimaging studies have failed to find clear evidence for a specificity of digit representations in motor cortex, but rather report a distributed network of control. Reported here are the results of two experiments; in Experiment 1 a sequential finger tapping task produced strong blood oxygen level dependent (BOLD) responses in the contralateral precentral gyrus, but there was a lack of specificity for distinguishing individual representations. A randomly ordered task did accomplish this goal. In the second experiment, a randomly ordered finger-tapping task was used and the findings demonstrated BOLD responses in clusters of voxels specific to movement of a single digit. The region of interest defined for each digit comprised several noncontiguous clusters. A "selectivity index" was developed to quantify the magnitude of the BOLD response to the movement of a specific digit, relative to BOLD response associated with movement of other digits. Strong evidence of BOLD selectivity (albeit not exclusivity) was found in the hemisphere contralateral to the cued digit; however, there was no evidence for an orderly spatial topography. These findings demonstrate that a selectivity of activation is quantifiable, supports a theory of noncontiguous distribution of control, and provides a method for comparing between healthy and impaired populations and investigating changes following training or intervention.
منابع مشابه
Effect of Physiological Noise on Thoraco-lumbar Spinal Cord FMRI in 3T Magnetic Field
Introduction: Functional MRI methods have been used to study sensorimotor processing in the Spinal cord. However, these techniques confront unwanted contributions to the measured signal from the physiological fluctuations. For the spinal cord imaging, most of the challenges are consequences of cardiac and respiratory movement artifacts that are considered as significant sources of noise, especi...
متن کاملEffect of Physiological noise on Thoraco-Lumbar spinal cord fMRI in 3T Magnetic field
Introduction: Functional MRI methods have been used to study sensorimotor processing in the brain and the Spinal cord. However, these techniques confront unwanted contributions to the measured signal from physiological fluctuations. For the spinal cord imaging, most of the challenges are consequences of cardiac and respiratory movement artifacts that are considered as signifi...
متن کاملEvaluation of Sensory Pathways in Spinal Cord by Comparison of fMRI Methodologies
Introduction: Today, clinicians and neuroscientists need to have a comprehensive survey of neurological pathologies and injuries. For the First-time, SEEP contrast and Spin-Echo pulse sequences was used for functional imaging of the Lumbar spinal cord. This method used by several research groups for Spinal cord mapping, but other researchers tried to improve BOLD fMRI to Spina...
متن کاملBOLD matches neuronal activity at the mm scale: A combined 7 T fMRI and ECoG study in human sensorimotor cortex
High resolution BOLD fMRI has the potential to map activation patterns of small neuronal populations at the scale of cortical columns. However, BOLD fMRI does not measure neuronal activity, but only a correlate thereof, since it measures blood dynamics. To confirm that BOLD activation maps reflect neuronal population activity patterns, a direct comparison with neuro-electrophysiological data fr...
متن کامل3D-Video-fMRI: 3D Motion Tracking in a 3T MRI Environment
We propose a technical solution that enables 3D video-based in-bore movement quantification to be acquired synchronously with the BOLD function magnetic resonance imaging (fMRI) sequences. Our solution relies on in-bore video setup with 2 cameras mounted in a 90 degrees angle that allows tracking movments while acquiring fMRI sequences. In this study we show that using 3D motion quantification ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Human brain mapping
دوره 33 7 شماره
صفحات -
تاریخ انتشار 2012